Neural Techniques for Improving the Classification Accuracy of Microarray Data Set using Rough Set Feature Selection Method

نویسندگان

  • Bichitrananda Patra
  • Sujata Dash
  • B. K. Tripathy
چکیده

-Classification, a data mining task is an effective method to classify the data in the process of Knowledge Data Discovery. Classification method algorithms are widely used in medical field to classify the medical data for diagnosis. Feature Selection increases the accuracy of the Classifier because it eliminates irrelevant attributes. This paper analyzes the performance of neural network classifiers with and without feature selection in terms of accuracy and efficiency to build a model on four different datasets. This paper provides rough feature selection scheme, and evaluates the relative performance of four different neural network classification procedures such as Learning Vector Quantisation (LVQ) LVQ1, LVQ3, optimizedlearning-rate LVQ1 (OLVQ1), and The Self-Organizing Map (SOM) incorporating those methods. Experimental results show that the LVQ3 neural classification is an appropriate classification method makes it possible to construct high performance classification models for microarray data. Keywords-Data Mining, Rough, Feature Selection, Learning Vector Quantisation, Self-Organizing Map, Classification.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A hybrid filter-based feature selection method via hesitant fuzzy and rough sets concepts

High dimensional microarray datasets are difficult to classify since they have many features with small number ofinstances and imbalanced distribution of classes. This paper proposes a filter-based feature selection method to improvethe classification performance of microarray datasets by selecting the significant features. Combining the concepts ofrough sets, weighted rough set, fuzzy rough se...

متن کامل

Diagnosis of the disease using an ant colony gene selection method based on information gain ratio using fuzzy rough sets

With the advancement of metagenome data mining science has become focused on microarrays. Microarrays are datasets with a large number of genes that are usually irrelevant to the output class; hence, the process of gene selection or feature selection is essential. So, it follows that you can remove redundant genes and increase the speed and accuracy of classification. After applying the gene se...

متن کامل

Combination of Feature Selection and Learning Methods for IoT Data Fusion

In this paper, we propose five data fusion schemes for the Internet of Things (IoT) scenario,which are Relief and Perceptron (Re-P), Relief and Genetic Algorithm Particle Swarm Optimization (Re-GAPSO), Genetic Algorithm and Artificial Neural Network (GA-ANN), Rough and Perceptron (Ro-P)and Rough and GAPSO (Ro-GAPSO). All the schemes consist of four stages, including preprocessingthe data set ba...

متن کامل

A New Framework for Distributed Multivariate Feature Selection

Feature selection is considered as an important issue in classification domain. Selecting a good feature through maximum relevance criterion to class label and minimum redundancy among features affect improving the classification accuracy. However, most current feature selection algorithms just work with the centralized methods. In this paper, we suggest a distributed version of the mRMR featu...

متن کامل

Improving of Feature Selection in Speech Emotion Recognition Based-on Hybrid Evolutionary Algorithms

One of the important issues in speech emotion recognizing is selecting of appropriate feature sets in order to improve the detection rate and classification accuracy. In last studies researchers tried to select the appropriate features for classification by using the selecting and reducing the space of features methods, such as the Fisher and PCA. In this research, a hybrid evolutionary algorit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013